Effects of ion transport inhibitors on MCh-mediated secretion from porcine airway submucosal glands.

نویسندگان

  • Jonathan E Phillips
  • John A Hey
  • Michel R Corboz
چکیده

Submucosal glands secrete macromolecules and liquid that are essential for normal airway function. To determine the mechanisms responsible for airway gland secretion and the interaction between gland secretion and epithelial ion transport, studies were performed in porcine tracheal epithelia by using the hillocks and Ussing techniques. No significant baseline gland fluid flux (J(G)) was measured by the hillocks technique after 3 min, and the epithelia had an average potential difference of 7.5 +/- 0.5 mV (lumen negative) with a short-circuit current of 73 +/- 4 microA/cm(2), as measured by the Ussing technique. The secretagogue methacholine induced concentration-dependent increases in J(G) after 3 min from 0.003 microl. min(-1). cm(-2) at 0.1 microM to 0.41 +/- 0.04 microl. min(-1). cm(-2) at 1,000 microM, with a 0.9 +/- 0.1 mV hyperpolarization of the epithelium at 1,000 microM. When the epithelium was pretreated for 3 min with the sodium channel blocker amiloride, the methacholine (1,000 microM)-induced J(G) increased to 0.67 +/- 0.09 microl. min(-1). cm(-2), and the hyperpolarization increased to 2.2 +/- 0.5 mV over the amiloride-pretreated level. When pretreated for 3 min with the chloride channel blocker diphenylamine-2-carboxylic acid, the methacholine (1,000 microM)-induced J(G) was inhibited to 0.20 +/- 0.06 microl. min(-1). cm(-2), and the methacholine-induced hyperpolarization was abolished. These data indicate that, in porcine airways, methacholine-induced J(G) may be increased by inhibition of sodium absorption and decreased by inhibition of chloride secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of anion secretion inhibitors on mucin content of airway submucosal gland ducts.

In porcine bronchi, inhibition of both Cl- and[Formula: see text] transport is required to block the anion secretion response to ACh and to cause mucus accumulation within ACh-treated submucosal gland ducts [S. K. Inglis, M. R. Corboz, A. E. Taylor, and S. T. Ballard. Am. J. Physiol. 272 ( Lung Cell. Mol. Physiol. 16): L372-L377, 1997]. In this previous study, a combination of three potential [...

متن کامل

ALUNG October 21/4

Ballard, Stephen T., Laura Trout, Zsuzsa Bebök, E. J. Sorscher, and Angela Crews. CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am. J. Physiol. 277 (Lung Cell. Mol. Physiol. 21): L694–L699, 1999.—Previous studies demonstrated that AChinduced liquid secretion by porcine bronchi is driven by active Cl2 and HCO3 2 secretion. The present study was unde...

متن کامل

Ionic mechanism of forskolin-induced liquid secretion by porcine bronchi.

cAMP-elevating agents such as forskolin and vasoactive intestinal peptide induce liquid secretion by tracheobronchial submucosal glands. This pathway is thought to be CFTR dependent and thus defective in cystic fibrosis; however, the ionic mechanism that drives this secretion process is incompletely understood. To better define this mechanism, we studied the effects of ion transport inhibitors ...

متن کامل

Flagellin/TLR5 signaling potentiates airway serous secretion from swine tracheal submucosal glands.

Airway serous secretion is essential for the maintenance of mucociliary transport in airway mucosa, which is responsible for the upregulation of mucosal immunity. Although there are many articles concerning the importance of Toll-like receptors (TLRs) in airway immune systems, the direct relationship between TLRs and airway serous secretion has not been well investigated. Here, we focused on wh...

متن کامل

Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands.

Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2002